
Arindam Saha / International Journal of New Technologies in Science and Engineering

Vol. 5, Issue. 4, 2018, ISSN 2349-0780

Available online @ www.ijntse.com 225

AUTOMATED TEST DATA

GENERATION

USING HEURISTIC TECHNIQUES

Arindam Saha

Department of Computer Science & Engineering

Girijananda Chowdhury Institute of Management and Technology
Guwahati, Assam -781017

arindamcse@gimt-guwahati.ac.in

 Keywords: SUT, ATDG, Control Flow Graph, Test Data.

ABSTRACT

 Automated Test Data Generation (ATDG) is an activity that in the course of software

testing automatically generates test data for the software under test (SUT). It usually makes the

testing more efficient and cost effective. Test Data Generation (TDG) is crucial for software

testing because test data is one of the key factors for determining the quality of any software

test during its execution. The multi-phased activity of ATDG involves various techniques for

each of its phases. But till now a fully automated system is not available which will provide all

the benefits.

INTRODUCTION

Automatic Test Data Generation Technique (ATDG) is a technique to automatically generate

test data for Software under Test (SUT). It is an activity that in the course of software testing

automatically generates test data for the software under test. It makes software testing more

efficient and cost effective. ATDG is crucial because test data is one of the crucial factors that

determine the quality of a software test during its execution. ATDG reduces testing time by and

order of magnitude and presses the rising cost of test data generation downwards. All new

inventions are parsed through a variety of tests which are based on a well-established criterion

developed over the years. Mostly this activity is generated to verify the performance and

quality of the product.

Generally software is tested for its structure or functions which are supposed to be

performed by its components .Testing in the prior is commonly known as structural or white-

box testing and in the later case it is known as functional or black-box testing. For either of the

cases, test data is required to “traverse” through the SUT. The outcome of the traversal

determines correctness, performance, or in general, the quality of the software.

http://www.ijntse.com/
mailto:arindamcse@gimt-guwahati.ac.in

Arindam Saha / International Journal of New Technologies in Science and Engineering

Vol. 5, Issue. 4, 2018, ISSN 2349-0780

Available online @ www.ijntse.com 226

Heuristic Technique refers to experience-based techniques for problem solving,

learning and discovery. Heuristic methods are used to speed up the process of finding a

satisfactory solution, where an exhaustive search is impractical. Examples of this method

include rule of thumb method, an educated guess, an intuitive judgment or just common sense.

In precise terms, heuristics are strategies that are readily accessible, though loosely applicable

information to control problem solving in humans and machines.

1.1 Need of automation in testing

 Unreliable software is considered to be prone to failures and hence, in general,

carries little worth. Software testing which is the “process of ensuring that a certain piece of

software item fulfills its requirements” is one of the vital factors that can ensure reliability of

the software. Assurance of software reliability partially depends on testing. However it is

interesting to note that testing itself also needs to be reliable. Automating the testing process is

a sound engineering approach, which can make the testing efficient, cost effective and reliable.

Further mostly customers rely on software that is prepared according to some authenticated

standards. Automization could promote standardization through standardized and patent test

data generation tools.

 Automated test data generation is one of the core factors that contribute

towards automated testing. It is used for automatically generating test data for a SUT during

software testing. Test data generation is a tedious, expensive and error prone process, if it is

done manually. Automated software testing increases test coverage. Even the most

conscientious tester will make mistakes during monotonous manual testing. Automated tests

perform the same steps precisely every time they are executed and never forget to record

detailed results. Moreover, automated testing can simulate tens, hundreds or thousands of

virtual users interacting with network or web software and applications.

 Thus, automation in the test data generation process could curtail testing

expenses and at the same time, increase the reliability of testing as a whole. For these reasons

automated test data generation has remained a topic of interest for the past four decades.

1.2 Types of automation in testing

 ATDG itself is a multi-phased process, which involves different techniques for

every phase. The different ways to generate test data are:-

a) Random test data generation

b) Goal oriented test data generation

c) Path Oriented test data generation

d) Heuristic technique

a) Random test data generation:

 Random test data generation simply consists of generating inputs at random

until a useful input is found. This approach is quick and simple but might be a poor choice

http://www.ijntse.com/

Arindam Saha / International Journal of New Technologies in Science and Engineering

Vol. 5, Issue. 4, 2018, ISSN 2349-0780

Available online @ www.ijntse.com 227

with complex programs and with complex adequacy criteria. The probability of selecting an

adequate input by chance could be low in this case.

The biggest issue for random approach is that of adequate test data selection.

b) Goal oriented test data generation:

In the goal-oriented approach, test-data is selected from the available pool of

candidate test data to execute the selected goal, such as a statement, irrespective of the path

taken. This approach involves two basic steps: to identify a set of statements (respective

branches) the covering of which implies covering the criterion; to generate input test data

that execute every selected statement (respective branch).

Generally the goal-oriented approach faces issues of goal selection and

selection of adequate test data.

c) Path Oriented test data generation:

In path-oriented test data generation the typical approach is generation of a

control-flow graph. In this approach, at first a graph is generated first and subsequently, by

using the graph a particular path is selected. With the help of a technique such as symbolic

evaluation (in the static case otherwise it is called function minimization) test data is

generated for that path in the end. In symbolic execution variables are used instead of

actual values while traversing the path.

 The path-oriented approach might face the problems when generating

paths/graphs, traversing test data through branches and predicates (infeasible path

problem), and while complexity of data types. It is harder to find the test data.

d) Heuristic technique:

 It is a part of random testing but the difference with random testing is that in

random testing the input test data are generated without any information but in heuristic

technique some information is available prior to the testing process.

In our research project, we are trying to implement this heuristic technique,

since it can provide us the most efficient way for generating the test data.

TESTING FUNDAMENTALS

2.1 What is Software Testing?

 Testing a program consists of subjecting the program to a set of test inputs or test cases

and observing if the program behaves as expected. If the program fails to behave as expected

then the condition under which the failure occurs are noted for later debugging or correction.

The general goal of software testing is to affirm the quality of a program through systematic

exercising of the code in a carefully controlled environment.

2.2 Why software testing is needed?

http://www.ijntse.com/

Arindam Saha / International Journal of New Technologies in Science and Engineering

Vol. 5, Issue. 4, 2018, ISSN 2349-0780

Available online @ www.ijntse.com 228

 Software testing is needed for the following reasons:

a) To provide confidence in the system

b) To identify the area of weakness

c) To establish the degree of quality

d) To provide an understanding of the overall system

e) To provide the system both useful and operable.

2.3 Types of Testing:

 In general testing are of two types. They are –

a) Black – Box Testing

b) White – Box Testing

2.3.1 Black – Box Testing –

 In black – box testing test cases are designed from an examination of the input / output

values and no knowledge of design or code is required. The following are the two main

approaches to design black – box cases:

a) Equivalence Class Partitioning: In this approach, the domain of input values to a

program is partitioned into a set of equivalence classes. The partitioning is done such

that the behaviour of the program is similar to every input data belonging to the same

equivalence class.

b) Boundary value analysis: A type of programming error frequently occurs at the

boundaries of different equivalence classes of inputs. Programmers often fail to see the

special processing required by the input values that lie at the boundary of different

classes. For example, programmers may improperly use < instead of <=. Boundary

value analysis may lead to selection of test cases at the boundaries of different

equivalence classes.

2.3.2 White – box testing

 It uses the source code of the program. There are several white – box strategies and each

strategy is based upon some heuristics. One – white box testing is said to be stronger than

another strategy, if all types of errors detected by the first testing strategy (say A) are also

detected by the second testing strategy (say B) and the second strategy additionally detects

some more types of errors.

2.4 Phases of Testing:

Again testing can be divided into three phases:

http://www.ijntse.com/

Arindam Saha / International Journal of New Technologies in Science and Engineering

Vol. 5, Issue. 4, 2018, ISSN 2349-0780

Available online @ www.ijntse.com 229

a) Coding and Unit Testing

b) Integration Testing

c) System Testing

2.4.1 Coding and unit testing:

 The purpose of this phase of software development phase is to translate the software design

into source code. Each component of the design is implemented as a program module. The end

product of this phase is set of program modules that have been individually tested. During this

phase each module is unit tested to determine the correct working of all the individual modules.

2.4.2 Integration testing:

 Integration of different modules is undertaken once they have been coded and unit tested.

During this phase the modules are integrated in a planned manner. During each integration step,

the partially integrated system is tested and a set of previously planned modules are added to it.

Finally, when all the modules have been successfully integrated and tested, the system testing is

carries out.

2.4.3 System Testing:

 System Testing usually consists of three different kinds of testing activities:

a) Alpha Testing : It is the system testing performed by the development team

b) Beta Testing: It is the system testing performed by a friendly set of customers.

c) Acceptance Testing: It is the system testing performed by the customer himself after

the product delivery to determine whether to accept or reject the delivery of the

product.

 The Method

In my approach, I have employed Heuristic Method of test data generation to generate the

test data for particular software under test. Heuristic method is different from the other

techniques as it uses some prior information that is available to generate the test data. In

The total weight calculated for each set of test data will provide us with the required test

data which will give optimality in path traversal.

 The different steps are as follows:

• Take one sample program first.

• Then map the control flow graph of the sample program.

• Next, assign weights to the edges of the control flow graph.

http://www.ijntse.com/

Arindam Saha / International Journal of New Technologies in Science and Engineering

Vol. 5, Issue. 4, 2018, ISSN 2349-0780

Available online @ www.ijntse.com 230

• Then design a few test cases solving the individual constraints and calculate the total

weights for each of the test cases. We will also find out the different path traversed by

each test data.

• Based on the results, analyze the best test case data which will optimize path traversal.

For programs having loop structure:

Here, the weights have been assigned in the following manner

For sequential statements, the same weight has been assigned for the current edge as that of the

previous one.

If there is a loop from a node, then the maximum weight is given to that edge and the minimum

to the edge having no loop(like 80% and 20%)

If there is a conditional statement, then weight is assigned as 50%-50% of the previous edge on

the current edges.

For programs having non – loop structure :

Here, we have assigned the weights in the following manner

If n is the weight assigned to a node, then the edges from that node will be having the weights

as (n/2) +2 and (n/2) -2 [in case of a node having two edges].

 RESULT

Result of Sample Program - 1

Control flow graph

1
a,b,c

2
d

3
e,f

10

4
g,h

5
i,j

6
k

7
l

8

4

4

4

4

8

- WEIGHTS

- STATEMENTS.

- FLOW OF
CONTROL

http://www.ijntse.com/

Arindam Saha / International Journal of New Technologies in Science and Engineering

Vol. 5, Issue. 4, 2018, ISSN 2349-0780

Available online @ www.ijntse.com 231

Fig.CFG of the sample GCD program

Path Table

X Y PATH COVERED TOTAL WEIGHT

2 4 a, b, c, d, e, f, i, j, k, d, l 36

1 1 a, b, c, d, l 12

5 3
a, b, c, d, e, f, g, h, k, d, e, f, i, j, k,

d, e, f, g, h, k, d, l
84

Path table of Sample GCD program

Equivalence class of the Path Table

X Y PATH COVERED TOTAL WEIGHT

5 3
a, b, c, d, e, f, g, h, k, d, e, f, i, j, k,

d, e, f, g, h, k, d, l
84

Equivalence Class of the Path table of Sample GCD program

Result of Sample Program - 2

Control flow graph

http://www.ijntse.com/

Arindam Saha / International Journal of New Technologies in Science and Engineering

Vol. 5, Issue. 4, 2018, ISSN 2349-0780

Available online @ www.ijntse.com 232

1
a,b,c,

d

2
e

3
f

6
k

4
g,h

8
m

7
l

5
i,j

marks>100

marks<=100

marks>=50marks<50

grade=“”
grade!=“”

28

28

52

24

24

52

48

48

52

100

- WEIGHTS

- STATEMENTS.

- FLOW OF
CONTROL

Fig. CFG of the sample Grade program

6.2.2 Path table

MARKS PATH COVERED TOTAL WEIGHT

99 a,b,c,d,e,f,i,j,k,l,m 304

101 a,b,c,d,e,k,m 196

49 a,b,c,d,e,f,g,h,k,l,m 312

51 a,b,c,d,e,f,i,j,k,l,m

304

http://www.ijntse.com/

Arindam Saha / International Journal of New Technologies in Science and Engineering

Vol. 5, Issue. 4, 2018, ISSN 2349-0780

Available online @ www.ijntse.com 233

Path table of Sample Grade program

Equivalence class of the Path Table

MARKS PATH COVERED TOTAL WEIGHT

99 a,b,c,d,e,f,i,j,k,l,m

304

101 a,b,c,d,e,k,m 196

49 a,b,c,d,e,f,g,h,k,l,m 312

Equivalence Class of the Path table of Sample GCD program

CONCLUSIONS

The proposed method generated almost all the linearly independent feasible paths. As for

example, consider the GCD program. There are three linearly independent paths. And in this

approach, the test data for all the paths have been generated. For the sample program “grade”,

we have got three test data, though there are six independent paths in the CFG.Thus the

proposed method generates almost all the feasible paths that exist in a program and the

presence of infeasible paths does not create any problem.

 REFERENCES

[1] Arnauld Gotlieb and Bernard Botella , “Test Data Generation Using Heuristic

Technique”.

[2] Jon Edvardsson Department of Computer and Information Science, Linkoping University,

Sweden “A Survey on automatic test data generation”.

[3] Minh Ngoc Ngo and Hee Beng Kuan Tan , “Heuristic – based infeasible path detection for

dynamic test data generation”.

[4] Bogdan Korel, Member IEEE, “Automated Software Test Data Generation”.

[5] P David Coward “Symbolic Execution And Testing ”.

http://www.ijntse.com/

